J Genomics 2021; 9:6-9. doi:10.7150/jgen.53040

Research Paper

Draft Genome Sequence of Enterobacter sp. AS-1, a Potential Eurytrophic Recombination Host

Yuki Iwasaki1, Yuya Itoiri1, Sota Ihara1, Hironaga Akita2, Mamoru Oshiki3, Zen-ichiro Kimura1✉

1. National Institute of Technology (KOSEN), Kure College (NIT, Kure), 2-2-11, Agaminami, Kure, Hiroshima 737-8506, Japan
2. Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 3-11-32, Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan
3. Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13, West 8, Sapporo, Hokkaido, 060-8628, Japan

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Iwasaki Y, Itoiri Y, Ihara S, Akita H, Oshiki M, Kimura Zi. Draft Genome Sequence of Enterobacter sp. AS-1, a Potential Eurytrophic Recombination Host. J Genomics 2021; 9:6-9. doi:10.7150/jgen.53040. Available from https://www.jgenomics.com/v09p0006.htm

File import instruction


Strain AS-1 was isolated from laboratory-scale activated sludge collected in Japan.

This strain not only grows on rich medium, including R2A medium, but also forms colonies on medium lacking organic matter other than agar (water agar), indicating it could be used as a eurytrophic recombinant host in material production processes. Here, we present a draft genome sequence of Enterobacter sp. AS-1, which consists of a total of 24 contigs containing 5,207,146 bp, with a GC content of 55.64%, and comprising 4,921 predicted coding sequences. Based on 16S rRNA gene sequence analysis, strain AS-1 was designated as Enterobacter sp. AS-1.

Keywords: Enterobacter, Eurytrophic, Recombination host, Whole genome sequence