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Abstract 

The success of CRISPR/Cas9 gene editing applications relies on the efficiency of the single guide RNA 
(sgRNA) used in conjunction with the Cas9 protein. Current sgRNA design software vary in the details 
they provide on sgRNA sequence efficiency and usually limit organism choice to a list of 
developer-selected species. The crispRdesignR package aims to address these limitations by providing 
comprehensive sequence features of the generated sgRNAs in a single program, which allows users to 
predict sgRNA efficiency and design sgRNA sequences for systems that currently do not have optimized 
efficiency scoring methods. crispRdesignR reports extensive information on all designed sgRNA sequences 
with robust off-target calling and annotation and can be run in a user-friendly graphical interface. The 
crispRdesignR package is implemented in R and has fully editable code for specialized purposes including 
sgRNA design in user-provided genomes. The package is platform independent and extendable, with its 
source code and documentation freely available at https://github.com/dylanbeeber/crispRdesignR. 
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Introduction 
The CRISPR/Cas9 system has attracted attention 

in recent years for its ability to edit and regulate DNA 
in a wide variety of organisms and cell types. Using a 
strand of single guide RNA (sgRNA), the Cas9 protein 
is able to search a cellular genome and induce double 
stranded breaks at a target sequence complementary 
to the sgRNA that can then be modified1. However, 
several sequence features of the sgRNA and 
surrounding DNA sequence can influence the 
enzymatic activity of Cas92. Crucially, the genomic 
DNA must contain a protospacer adjacent motif 
(PAM) in the region immediately following the 3’ end 
of the target DNA for Cas9 to recognize the sequence1. 
Other sgRNA sequence features of the guide related 
to the nucleotide composition like homopolymers and 
self-complementarity can also affect the activity of the 
sgRNA2. 

The efficiency of the sgRNA is a major factor in 
the success of Cas9 gene editing applications2. To 
predict the efficiency of sgRNA sequences, scoring 
methods have been developed by applying machine 

learning techniques to CRISPR/Cas9 experimental 
data3,4,5. These efficiency scoring methods are accurate 
within the parameters of the experiments they were 
based on. However, the predictions are not 
necessarily generalizable to Cas9 applications in all 
cell types, organisms, and PAMs not included in the 
efficiency scoring experimental data6. At their most 
predictive, scoring methods have been shown to only 
explain about 40% of the variation in efficiency for 
most guides6. Known sequence features that decrease 
sgRNA efficiency are not always considered by 
scoring models3,4, which could result in suggesting 
inactive sgRNAs. Using the scores provided by these 
machine learning models in conjunction with 
considering the effects of sequence features on activity 
can improve overall guide design7. 

Potential sgRNA sequences that contain a 
sequence feature not conducive to Cas9 enzymatic 
activity can be scored highly by efficiency scoring 
methods that have not been trained on that feature. In 
order to generate the most active sgRNA, sequence 
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features must be considered alongside efficiency 
scoring, however current programs designed to 
identify suitable sgRNAs might not report all 
sequence features relevant to sgRNA efficiency7. 
Features like sgRNA self-complementarity, presence 
of homopolymers, and potential off-target effects can 
drastically affect experimental outcomes and are often 
not considered by scoring models3,4. sgRNA 
sequences that are able to form hairpins with 
themselves or with other regions of the RNA 
backbone have been shown to affect sgRNA activity8,9, 
and as such is a feature that should generally be 
avoided. Homopolymers that contain 4 or more 
consecutive identical base pairs (e.g. GGGG) can 
decrease cutting activity, and a homopolymer with 4 
consecutive T’s will be terminated prematurely in 
systems that utilize RNA polymerase III to create the 
sgRNA10. It is possible for Cas9 to target and cleave 
DNA sequences with multiple mismatches to the 
guide RNA resulting in off-target effects3. While often 
problematic for those working with Cas9, these 
off-target sequences as well as hairpins and 
homopolymers can be predicted from the sequence 
features of the guide RNA. Such features are expected 
to affect activity more consistently across different cell 
types, organisms and PAMs than specific nucleotide 
position features2. 

Current sgRNA design tools are commonly 
developed in Python and Perl, with several 
exclusively deployed as web applications only 
accessible through a browser11. A variety of methods 
are used to search a target genome for off-targets, 
resulting in search times that can vary from several 
seconds to several hours depending on factors such as 
the length of the target genome and the number of 
sgRNA sequences reported11. Importantly, these tools 
vary drastically in the information that they provide 
the user, with differences in the number of 
mismatches that are allowed for target searching and 
filtering steps that prevent sgRNAs from being 
reported based off internal criteria11. 

We have developed the R package crispRdesignR 
to improve upon current sgRNA design software for 
CRISPR/Cas9 applications by providing all guides 
that match a customizable PAM sequence within a 
target region of any genome using the advanced 
Doench Rule Set 2 predictive model3, and by 
reporting sequence features often missing from other 
available programs but important in the 
CRISPR/Cas9 system including the GC content, 
self-complementarity, presence of homopolymers, 
and potential off-target effects for each candidate 
sgRNA. These additional sequence features 
accompany the sgRNA results as separate output 
tables, as they are not included in the efficiency 

scoring model. This information is especially useful 
for working with non-standard Cas9 applications 
where the efficiency score may not be reliable. An 
optional table can be generated that displays 
supplementary information on where the potential 
off-target effects occur in a user-selected genome. 
crispRdesignR is a guide RNA design program written 
in R, allowing easy integration with other R-based 
workflows. The crispRdesignR package can also be 
utilized with a graphical user interface for easier 
accessibility to non-bioinformaticians. In addition, the 
flexibility of this R package allows users to design 
sgRNAs in uncommon organisms not currently 
accessible through other design tools by inputting 
custom genomes and annotation files for analysis, 
highlighting the versatility of crispRdesignR. 

Materials and Methods 
Model Features 

The predictive sgRNA efficiency scoring model 
used in crispRdesignR examines the same features as 
the Doench 2016 model3 except for the cut site within 
the resulting protein, because not every Cas9 target 
site is located in a protein encoding region. Our 
program employs a gradient boosted regression 
model trained on the FC and RES data sets used in 
Doench Rule Set 2. The FC and RES data sets3 contain 
about 5000 sgRNA sites plus context sequence 
(30-mer) for a variety of different genes. Ranks for 
each sgRNA site are calculated from read counts and 
normalized between 0 and 1, which is used by the 
gradient boosting algorithm gbm12 to predict sgRNA 
activity. The Doench 2016 scoring method is trained 
on guide RNA utilizing the 5’NGG3’ PAM sequence, 
however crispRdesignR can design guides for any 
PAM sequence that is 6 base pairs or fewer. When 
designing guides for custom PAM sequences, 
crispRdesignR does not change the scoring method 
because many of the sequence features considered by 
Doench et al.3 are unrelated to the PAM sequence. It is 
however important to note that the accuracy score 
provided is expected to be less accurate when 
designing sgRNA sequences with custom PAMs. 

The presence of specific nucleotides at certain 
positions in a sgRNA target site can influence the 
activity of that site. crispRdesignR will consider the 
single and dinucleotides at each position and convert 
them into features that the machine learning model 
uses to predict activity. In accordance with the 
Doench Rule Set 23, crispRdesignR accounts for the 
presence of position-dependent single nucleotides, 
position-dependent dinucleotides, single nucleotide 
count, dinucleotide count, GC count, nucleotides that 
bookend the PAM sequence, and thermodynamic 
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features of the target sequence plus context region 
(30-mer). As in Doench Rule Set 2, nucleotide features 
are one-hot encoded, meaning that the presence of a 
nucleotide in a position is either “off” (0) or “on” (1). 
This leads to four features for each single nucleotide 
position (A, C, T, or G) and sixteen features for each 
dinucleotide position (AA, AC, AG, AT, etc.). One-hot 
encoding of these features is crucial for accurate 
machine learning predictions and is made possible by 
the vtreat package13. A position-independent total 
count of single and dinucleotides is also used. This is 
simply the number of each specific nucleotide and 
dinucleotide combination in the 30-mer. Four features 
counting each single nucleotide and sixteen features 
counting each dinucleotide are recorded. 

The GC count of the target site (20-mer) is taken 
and converted into a single feature (a number 
between 0 and 20). However, two additional GC 
features are taken, one binary variable for if the GC 
count is above 10 and another for if the GC count is 
below 10. The two nucleotides that bookend the “GG” 
of the PAM site are one-hot encoded as a dinucleotide 
feature. These are the nucleotides at position 25 and 
28 of the 30-mer. As with the position-dependent 
dinucleotide features, these two nucleotides are 
converted into 16 binary features, one for each 
possible dinucleotide combination. 

Four thermodynamic features are recorded, one 
for the predicted melting temperature (Tm) of the 
sgRNA plus context sequence (30-mer), one for the 
Tm of the five nucleotides upstream from the PAM 
(positions 20-24), one for the Tm of the eight 
nucleotides upstream from the previous 5-mer 
(positions 12-19) and one for the Tm of the five 
nucleotides upstream from the 8-mer (positions 7-11). 
The Doench Rule Set 2 uses the Tm_staluc function 
from biopython to calculate the Tm of these regions, 
so the function employed by crispRdesignR mirrors the 
Tm_staluc function using thermodynamic data from 
Allawi and SantaLucia14. 

Model Predictions 
The model features were used to train a gradient 

boosted regression model with the R package gbm12 
on the FC and RES data used by the Doench Rule Set 
2. Position-dependent features that contained no 
variation due to the restrictive PAM site were 
removed. Other features that showed no impact on 
the predictive power of the model were also removed. 
To predict the efficiency of package-generated sgRNA 
target sequences, the same features collected to design 
the model are collected for each possible target site. 
The generated data are then run through the gbm 
package and return a number from 0 to 1 for each 
target site, with 0 indicating less activity and 1 

indicating greater activity. 

Off-Target Annotation 
Users may search any genome that is provided 

through the BSgenome package15. BSgenome also 
allows users to import custom genomes and DNA 
sequences from FASTA files using the 
forgeBSgenomeDataPkg command on a seed file that 
describes the paths to the raw sequence data in 
FASTA format (more information can be found in the 
BSgenome documentation). Genome annotation files 
(.gtf) can be acquired through the Ensembl and 
BioMart databases or users can upload their own. 
Larger genomes should be loaded as a compressed 
.gtf file (.gtf.gz) due to size limitations. 

When off-target searching is on, each sgRNA 
sequence is checked for the presence of possible 
off-target sequences with up to four mismatches in the 
20-mer. Off-target sequences must match the rules of 
the PAM site or be included in the list of possible 
5’NGG3’ PAM mismatches made available by Doench 
et al.3. Users interested in searching for off-targets 
with multiple alternate custom PAMs can run the 
program multiple times with different custom PAM 
sequences. Off-target sequences that contain 4 
mismatches and do not directly match the PAM 
sequence are not reported by crispRdesignR as they are 
highly unlikely to be active3. The matchPattern() 
function available in the package BioStrings16 is used 
to collect data on each possible off-target sequence. 
matchPattern() searches the target genome for 
matching patterns up to 4 mismatches. Indels are not 
considered when searching for matches. When 
searching genomes with many base pairs (e.g. over 1 
billion) it is recommended to keep the DNA query 
sequence under 500 base pairs to keep the search time 
to several minutes. The matchPattern() function is 
slower than other match finding methods because it 
does not require the genome to be pre-indexed, which 
itself takes additional time. However, this method 
allows users to easily search uploaded custom 
genomes without prior processing.  

The locations of the possible off-target sequences 
are cross referenced with a user supplied genome 
annotation file (.gtf) and reports an off-target 
information table listing each possible off-target along 
with the sgRNA target site that it matches. 
crispRdesignR reports sgRNA target sequences and 
other perfect genomic matches in the off-target 
annotation table so that the user may verify their 
target location within the genome. The off-target 
information table lists the sequence type of the 
off-target, as well as the gene ID, gene name, and exon 
number. Any mismatched bases between the 
off-target and original guide sequence are highlighted 
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in red within this table. A cutting frequency 
determinant (CFD) score for each off-target is also 
listed in the off-target annotation table, which is 
calculated using data from Doench et al.3 to estimate 
the likelihood of Cas9 targeting this sequence. Each 
mismatch position is assigned a value based on the 
change from one specific nucleotide to another as well 
as the position of the mismatch within the sgRNA 
sequence. These values are then multiplied, 
producing a number between 1 and 0, with 1 being 
more likely to cut at the off-target and zero being less 
likely. These scores can then be used to rank potential 
off-targets and filter sgRNAs based on their ability to 
produce off-target effects. crispRdesignR does not 
consider the position of the query target DNA 
sequence when finding possible off-targets so that the 
user may verify the location of their sgRNA target 
sequences within the genome in the off-target 
annotation table.  

Functions 
All data is generated with a single function in 

R17: sgRNA_design(userseq, genomename, gtfname, 
userPAM, calloffs = TRUE, annotateoffs = TRUE). 
• userseq: The target sequence with which to 

generate sgRNA guides – a character sequence 
containing DNA bases (A,C,T,G) or the name of 
a FASTA or plain text file in the working 
directory. 

• genomename: The name of a genome (in 
BSgenome format) to check for off-targets and 
provide locations for sgRNA guides. These 
genomes can be downloaded through BSgenome 
or compiled by the user. 

• gtfname: The name of a genome annotation file 
(.gtf) in the working directory to annotate 
sgRNAs and off-target sequences. 

• userPAM: An optional argument used to set a 
custom PAM for the sgRNA. If not set, the 
function will default to the "NGG" PAM. 
Warning: the accuracy of efficiency scores has 
only been tested for the "NGG" PAM. 

• calloffs: If TRUE, the function will search for 
off-targets in the genome chosen specified by the 
genomename argument. If FALSE, off-target 
calling will be skipped. 

• annotateoffs: If TRUE, the function will provide 
annotations for the off-targets called using the 
genome annotation file specified by the gtfname 
argument. If FALSE, off-target annotation will be 
skipped. 

• getsgRNAdata(x): This command is used to 
retrieve the data on the generated sgRNA 

sequences, where x is the raw data generated by 
sgRNA_design(). 

• getofftargetdata(x): This command is used to 
retrieve the additional off-target data, where x is 
the raw data generated by sgRNA_design(). 
crispRdesignR makes use of the R packages 

vtreat13 , gbm12, BSgenome15, BioStrings16, shiny18, 
stringr19 and DT20. Sequence homology features are 
calculated based on the sgRNA interaction screen 
reported in Thyme et. al. 8. The full list of commands 
can be found on the software webpage 
https://github.com/dylanbeeber/crispRdesignR. 

Results 
The crispRdesignR tool is built entirely in the R 

programming language, utilizing various packages to 
assist with different aspects of the program (see 
Materials and Methods). The program can be run on 
the command line or through a graphical user 
interface (GUI). Guide RNAs are designed based on a 
23 base pair sequence from a user-input DNA 
sequence or FASTA file that ends with the PAM. The 
only hard limitation on DNA regions that can be used 
as guide RNA is the presence of the PAM site, 
5’NGG3’ in the case of SpCas9, the most commonly 
used Cas9 enzyme. In order to effectively provide a 
score for the experimentally-supported scoring 
method used in crispRdesignR, flanking sequence is 
also collected; this flanking sequence includes the four 
base pairs before the 5’ end of the sgRNA and three 
base pairs after the 3’ end of the PAM sequence. In 
total, a region of 30 base pairs is collected for each 
possible sgRNA. crispRdesignR exclusively designs 
20-mer sgRNAs to keep the flanking sequence 
collected consistent with the Doench Rule Set 2 
model3. The R package searches for sgRNAs from the 
input and returns a table listing candidate sgRNAs 
and their sequence features, and optionally returns 
annotated off-target information in a user-chosen 
genome (Figure 1). The GC content of each target 
sequence is calculated excluding the PAM site, as the 
GC content of the PAM does not affect binding to the 
target region3. The self-complementarity integer 
provided by crispRdesignR reports the number of 
possible 4-nucleotide regions of self-complementarity 
within both the sgRNA target sequence and the 
region on the sgRNA backbone that is prone to 
forming hairpins. Regions of self-complementarity 
between the target and itself as well as the target and 
the sgRNA backbone are given the same weight as 
both have been shown to greatly reduce activity8. 
Homopolymers are detected by searching for strings 
of 4 or more consecutive base pairs. 

crispRdesignR has adopted the efficiency scoring 
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method developed by Doench et al. (2016), employing 
a gradient boosted regression model trained on the FC 
and RES data sets3. In accordance with the Doench 
Rule Set 2, our model accounts for the presence of 
position-dependent single nucleotides, position- 
dependent dinucleotides, single nucleotide count, 
dinucleotide count, GC count, nucleotides that 
bookend the PAM sequence, and thermodynamic 
features of the target sequence plus context region 
(30-mer). The presence of specific nucleotides at 
certain positions in a sgRNA target site can influence 
the activity of that site. crispRdesignR considers the 
single and dinucleotides at each position and converts 
them into features that the machine learning model 
uses to predict activity. 

 To find off-target hits for the sgRNA, the 
genome from a user-selected species is loaded into 
crispRdesignR through the BSgenome package15, and 
each guide RNA is then searched through the genome 
for up to 4 mismatches. Once a complete list of 
matching sequences with genomic locations has been 
collected, the program then cross-references the 
matching locations with gene information provided in 
a user-input gene annotation file (.gtf). If the sgRNA 

matches a position in a gene, crispRdesignR reports the 
gene name as well as whether the match lies in a 
coding region. 

Running crispRdesignR will output two tables 
(Figure 2). The first table contains the information on 
each individual sgRNA, including the sequence, 
PAM, location, direction relative to the target 
sequence, GC content, homopolymer presence, 
self-complementarity, off-target matches, predicted 
efficiency score, and a column that summarizes 
unfavorable sequence features. The second table 
contains the information about each off-target match, 
including the original sgRNA, off-target sequence, 
chromosome, location, direction relative to the target 
sequence, number of mismatches, gene ID, gene 
name, genome feature, and exon number. These tables 
can be sorted and searched through the GUI or 
downloaded as .csv files for further analysis. The 
location of the original sgRNA target sequence in the 
genome can be found in the off-target information 
section for identity verification. If no genome is 
provided or off-target searching is skipped, no data 
will be provided in the off-target matches column or 
the off-target information table. 

 

 
Figure 1. A screen capture from the crispRdesignR GUI demonstrating the target sequence, genome selection, and genome annotation file inputs. Partial sgRNA results and 
off-target annotations are also shown. 
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Figure 2. The output tables of crispRdesignR using a partial version of the DAK1 gene sequence, which is provided with the package download. Not all off-target matches are 
shown in the screenshot. Columns in the sgRNA table include sgRNA sequence, PAM, direction, start, end, GC content, presence of homopolymers, possible self-complementary 
sequences, efficiency score3, number of matches in the user-provided genome with between 0 and 4 mismatches (MM), and notes. The Off-target information table includes the 
original sgRNA sequence, chromosome, start, end, number of mismatches, strand, CFD scores, matched sequence, gene ID, gene name, sequence type, and exon number. 

 

Table 1. Feature comparisons between several prominent free sgRNA design programs CHOPCHOP v222,23, CRISPR Design3, CRISPRseek25, 
CRISPOR21, and GuideScan24. Features reported include whether all targets that match the PAM are output (All targets), the scoring method 
from Doench3, Moreno-Mateos4, or customizable), self-complementarity through hairpin detection, GC content, homopolymer filtering, 
the maximum number of mismatches permitted between the guide sequence and reference, the available PAM sequence, and whether 
off-target sequences are reported and annotated. 

Software name CHOPCHOP v222,23 CRISPR Design3 CRISPRseek25 CRISPOR21 GuideScan24 crispRdesignR 
Providing entity Harvard Broad Institute UMASS Medical Tefor MSKCC UML 
All targets Yes No Yes Yes Yes Yes 
Scoring method Customizable Doench Doench Doench & M.-Mateos Doench Doench 
Hairpins Yes No No No No Yes 
GC content Yes No No No No Yes 
Homopolymers No No No No No Yes 
Max no. of mismatches 3 4 4 4 3 4 
PAM Customizable NGG, NNGRR Customizable Customizable NGG, TTTN Customizable 
Off-target Annotation No Limited Yes Yes No Yes 

 

Speed Comparisons 
 We compared the runtime of various sgRNA 

design programs based on what a user might 
experience. crispRdesignR has relatively fast runtimes 
to discover sgRNA sequences compared to other 
tools, although using custom genomes that are not 
pre-indexed leads to increased runtimes when 
choosing to call and annotate off-targets (Table 2). 
Most web-based programs have pre-indexed genomes 
for fast off-target calling, but indexing can take several 
hours to perform and as such is not always ideal for 

users uploading custom genomes or for few queries. 
On a desktop with 3.4 GHz CPU and 8.00 GB RAM, 
the run time for a 128 bp sequence (“DAK1 short”, 
provided with the program) in S. cerevisiae averages 
out to 8 seconds in crispRdesignR when calling 
off-targets (3 seconds without off-target calling) 
compared to 7 seconds in CRISPOR21 and 5 seconds in 
CHOPCHOP v222,23. GuideScan24 has some of the 
shortest runtimes when genomic coordinates are 
known and provided beforehand (2-3 seconds in H. 
sapiens and S. cerevisiae), but the web application can 
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take over a minute if provided a FASTA file when 
searching the human genome. crispRdesignR is 
comparable in terms of speed with another R package, 
CRISPRseek25, where crispRdesignR has a speed 
advantage when searching smaller genomes and 
CRISPRseek is faster with larger genomes. While not 
requiring genome indexing can save hours of 
run-time before conducting guide-design, the 
trade-off is that it extends the time of off-target 
searches: with the human genome, each additional 
sgRNA generated by crispRdesignR will add about 1 
minute of run time. To reduce run-time when 
searching for off-targets, it is recommended that users 
keep DNA query sequences under 250 bases pairs 
when searching against a genome containing over a 
billion base pairs.  

Efficiency Score Validation and Ranking 
Comparisons 

The sgRNA efficiency score ranking from 
crispRdesignR is largely consistent with other 
programs, with the four highest ranked sequences 
also found in the top five highest ranked sequences 
generated by most other programs tested (Table 3). 
Efficiency scores are expected to vary slightly from 
program to program as different applications are 
likely using variations of the predictive model 
described by Doench Rule Set 2. Scores generated by 
crispRdesignR have been tested against the human 
ribosomal, human non-ribosomal, and mouse all 
essential sgRNA data sets provided in Xu et al.26. 
These data sets contain sgRNAs designated as 

effective versus ineffective in both human and mouse 
cell lines. The scores provided by crispRdesignR clearly 
distinguish between effective and ineffective sgRNA 
in each of the three data sets (P-values < 0.001, 
two-sample Kolmogorov-Smirnov test), reflecting the 
results in Doench et al.3. 

When evaluating scores against other currently 
available sgRNA design programs, CHOPCHOP and 
CRISPOR provide identical prediction rankings and 
efficiency scores (after rounding), whereas 
crispRdesignR and GuideScan provide identical 
prediction rankings with different efficiency scores. 
crispRdesignR additionally predicts a unique off-target 
with 3 mismatches in the 3rd ranked guide sequence, 
which was not found by any of these other 
applications (Table 3). This possible off-target 
contains 3 mismatches within the target itself and 2 
within the PAM; other applications might count this 
as 5 mismatches and not report it as an off-target. 
However, mismatches within the target sequence are 
not tolerated in the same ways as mismatches in the 
PAM3, and as such are treated as separate in the 
mismatch calculation used in crispRdesignR. 
Additionally, the PAM for this particular off-target 
does not match the “NGG” template but is an 
alternative PAM that has been found to be targeted by 
SpCas9 in some circumstances based on the CFD 
off-target scoring predictions3. These reasons may 
prevent the other applications from reporting this 
particular sequence as a potential off-target. 

 

Table 2. Runtime comparisons for example sequences in each program analyzed. Run times (minutes:seconds) were averaged over three 
trials on a desktop PC (windows 10 OS, 3.4 GHz CPU with 4 cores, solid state drive, and 8.00 GB RAM). Some programs offered a limited 
list of available genomes that prevented analysis (indicated by N/A). Test sequences were picked to showcase a variety of sequences that 
guides may be designed for and each was searched for off-targets throughout the target organism’s whole genome. The DAK1 short 
example sequence can be found on the crispRdesignR github site; it is 128 bp long and generates 13 target sequences, with 35 off-targets. 
The DAK1 sequence contains 1780 bp and generates 170 target sequences, with 495 off-targets. The MYBPC3 deletion sequence contains 
57 bp and generates 6 target sequences, with 2,219 off-targets. The Partial ADRB1 sequence contains 70 bp and generates 11 target 
sequences, with 9,200 off-targets. 

Test Sequence Genome CHOP-CHOP22,23 CRISPR 
Design3  

CRISPRseek25  CRISP-OR21  GuideScan24 crispRdesignR (no 
off-targets) 

crispRdesignR (with 
off-target calling) 

DAK1 short S. cerevisiae (yeast) 0:05  N/A 2:10  0:07  0:02 0:03  0:08  
DAK1 S. cerevisiae (yeast) 0:18 N/A 4:24  0:19  0:02 0:14  1:47  
MYBPC3 deletion H. sapiens (human) 0:06 0:15  6:50  0:10  0:03 0:03  7:36  
Partial ADRB1 H. sapiens (human) 0:34 0:26  14:35 0:15  0:03 0:05  15:42  

 

Table 3. Comparison of efficiency scores of sgRNAs for the DAK1 short sequence from five different sgRNA design applications: 
CHOPCHOP, CRISPRseek, CRISPOR, GuideScan and crispRdesignR. Only the efficiency scores for the top 5 guide sequences from each 
program are shown.  

Guide Sequence CHOPCHOP22,23 CRISPRseek25 CRISPOR21 GuideScan24 crispRdesignR 
CAGGGACCAGCGTAATGGAG 63.75   64 68 0.660 
CGTAATGGAGGGGTTAGCAA 64.17 0.728 64 63 0.605 
TCAGGGACCAGCGTAATGGA 57.25 0.623 57 59 0.575 
TGCTAACCCCTCCATTACGC 58.74 0.283 59 56 0.522 
GCGTAATGGAGGGGTTAGCA    56 0.507 
TTCAGGGACCAGCGTAATGG 56.3  56   
TGTGACTTCAAACGATTTAG  0.577    
CAGTCAATTCAAGTCTCAAA  0.321    
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Discussion 
When utilizing web-based sgRNA design 

programs, a user is often limited by a list of 
preinstalled genomes. crispRdesignR sets itself apart 
by allowing the user to import a custom genome 
and/or genome annotation file to search for sgRNAs 
and off-target effects. The crispRdesignR software 
provides comprehensive sequence features to the user 
that are often omitted from other prominent sgRNA 
design programs (Table 1). The complete sequence 
feature information provided by crispRdesignR is very 
well-suited to applications where efficiency scores are 
of limited use. When using efficiency scoring methods 
with conditions that they have not been trained on 
(for example different organisms, cell types, or 
PAMs), the efficiency predictions will be less accurate. 
However, the predictive power of the model may not 
be completely lost if efficiency scoring methods are 
used in addition to known effects of various sequence 
features on activity to eliminate inactive sgRNA3. 

The open source nature of crispRdesignR allows 
users to build on the features of the software for their 
specific uses. The gradient boosted regression model 
that crispRdesignR uses for efficiency scoring can be 
trained on other experimental data sets that contain 
the sgRNA sequence plus context (30-mer) and guide 
rankings assigned scores between 0 and 1. This allows 
for user-generated efficiency scoring models trained 
on data relevant to that user’s needs. However, for 
this to be a strongly predictive model, activity data 
must be available and normalized for thousands of 
sgRNA sequences in that relevant context3. The 
accessibility of the output tables as .csv files generated 
by crispRdesignR also allow a user to easily isolate the 
sgRNA sequences and run them through other 
scoring models that are more appropriate for a 
specific application but that lack the sequence 
features, off-target annotation, or genome 
customization of crispRdesignR.  

The flexibility and details that are provided by 
the robust off-target annotation system used by 
crispRdesignR currently limit the speed of the 
program. While other programs might allow a user to 
index genomes for quicker searching, the process of 
indexing a custom genome can be hardware intensive 
and overall slower than a few searches on an 
unindexed genome for off-targets, particularly for 
design applications in a small target region. For 
applications that require sgRNA design in a large 
target region (over 1000 base pairs) within a large 
genome (over 1 billion base pairs), the user can bypass 
off-target calling in crispRdesignR to prevent long run 
times. Although web-based programs that access 
pre-indexed genomes offer superior speed, we show 

that they often report less sequence feature 
information and they are limited to a pre-defined list 
of genomes. CHOPCHOP v222,23 is one of the few 
applications that will provide the GC content of each 
sgRNA sequence, but it provides the GC content of 
both the target sequence plus the PAM site, instead of 
the target site alone (however, this has been corrected 
in the newer version of CHOPCHOP v327). The 
web-based version of CHOPCHOP v3 allows handling 
large jobs and uncommon genomes through 
command-line scripts, but whereas added genomes 
must be submitted to the developers and approved 
before use, crispRdesignR allows custom genomes to 
be directly and immediately used via its R interface. 

Another R package, CRISPRseek23, uses similar 
methods of efficiency scoring and off-target calling, 
allowing for searching custom genomes and 
annotation files. However, it lacks the graphical user 
interface and several sequence features provided by 
crispRdesignR. The two programs both take longer to 
run than many of their web-based counterparts due to 
their ability to use non-indexed genomes. Not 
requiring pre-indexed genome files allows 
crispRdesignR to be installed quickly and run on any 
custom genome, still performing relatively rapidly 
when designing a handful of guides or targeting small 
genomes. Although both crispRdesignR and 
CRISPRseek use the same efficiency scoring method, 
CRISPRseek requires the user to add python packages 
in order to obtain the scores based on Doench Rule Set 
23. crispRdesignR is able to provide scores based on 
Rule Set 2 completely within R. Each program 
contains exclusive features that the other lacks that 
may be useful in different settings. For example, 
CRISPRseek has the ability to filter sgRNA based on 
restriction enzyme cutting sites, while crispRdesignR 
detects possible self-complementary sgRNA 
sequences.  

The R package crispRdesignR sets itself apart by 
allowing the user to import a custom genome and/or 
genome annotation file to search for sgRNAs and 
off-target effects, while providing extensive target 
sequence information and the option of an accessible 
GUI. These unique features make crispRdesignR 
particularly useful for non-bioinformaticians working 
with uncommon organisms, non-standard cell types, 
and alternate PAMs. crispRdesignR allows users to 
seamlessly integrate data from other R-based 
workflows, including accessing and formatting 
additional genomes through BSgenome15. Accessible 
source code provides transparency and further adds 
to the versatility of crispRdesignR as efficiency scoring 
methods are developed and future technological 
improvements are made. 
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