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Abstract 

Y-Box Binding protein 1 (YBX-1) is known to be involved in various types of cancers. It's interactors also 
play major role in various cellular functions. Present work aimed to study the expression profile of the 
YBX-1 interactors during lung adenocarcinoma (LUAD). The differential expression analysis involved 57 
genes from 95 lung adenocarcinoma samples, construction of gene network and topology analysis. A 
Total of 43 genes were found to be differentially expressed from which 17 genes were found to be down 
regulated and 26 genes were up-regulated. We observed that Polyadenylate-binding protein 1 (PABPC1), 
a protein involved in YBX1 translation, is highly correlated with YBX1. The interaction network analysis 
for a differentially expressed non-coding RNA Growth Arrest Specific 5 (GAS5) suggests that two 
proteins namely, Growth Arrest Specific 2 (GAS2) and Peripheral myelin protein 22 (PMP22) are 
potentially involved in LUAD progression. The network analysis and differential expression suggests that 
Collagen type 1 alpha 2 (COL1A2) can be potential biomarker and target for LUAD. 
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Introduction 
Lung Adenocarcinoma, a subtype of non-small 

cell lung cancer is the most pervasive among lung 
cancers leading to the death of millions of people each 
year [1, 2]. Though the recent therapy for the lung 
adenocarcinoma with mutated EGFR and rearranged 
ALK have been significant [3, 4], but the other driving 
force for the progress of lung adenocarcinoma have 
not been deciphered much. The type of interaction 
among the gene and its environment decides their 
role in disease progression [5, 6]. Understanding the 
gene interactions and its importance in the regulation 
mechanism is necessary to identify a potential target 
for therapeutic application. 

In this study, we analyzed the expression of Y- 
box binding protein 1 (YBX1) and its interactors in 
lung adenocarcinoma (LUAD). YBX1 belongs to the 

Y-box binding protein family with a highly conserved 
cold shock domain and known to be involved in 
various eukaryotic cellular mechanisms [7-9]. YBX1 is 
usually involved in RNA splicing and translational 
mechanism in cytoplasm but, it translocates to 
nucleus and gets involved in transcriptional 
regulation during stress condition [10-13]. It is 
associated with drug resistance, cell proliferation and 
cell death [14]. The transcription factor of YBX1 binds 
to the E-box for regulating it [15].  

YBX1 is over expressed in various cancers and it 
has been suggested as biomarker in prognosis of 
various cancer types [16, 17]. Multi drug resistance 
and metastasis are major reason for it’s over 
expression [18, 19]. YBX1 interactors are known to be 
involved in various cellular mechanisms ranging from 
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cell signaling, DNA and protein repair mechanism to 
transcriptional regulation [20-26]. Genes which are 
known to be involved in regulation of YBX1 as well as 
those regulated by YBX1 has been listed in (Table 1). 

In this study we investigated the role of YBX1 

and its interactors in Lung adenocarcinoma by 
looking at their expression profile and constructed 
gene regulatory network in order to decipher their 
importance in network formation by a system 
biological approach. 

 

Table 1. Genes regulates and regulated by YBX1 

Gene- Id Gene Reference 
Genes Up- Regulates YBX1 | 4904 
TP73 | 7161 Tumor Protein 73  

[17] MYC | 4609 v-myc avian myelocytomatosis viral oncogene homolog 
MAX | 4149 MYC Associated Factor X 
TWIST1 | 7291 Twist basic helix-loop-helix transcription factor 1 [14] 
PABPC1 | 26986 Poly(A) binding protein, cytoplasmic 1 [18] 
GATA1 | 2623 GATA binding protein 1  [19] 
GATA2 | 2624 GATA binding protein 2  
PTGER1 | 5731 Prostaglandin E receptor 1 (subtype EP1) [20] 
SHH | 6469 Sonic Hedgehog [21] 
Genes Down- Regulates YBX1 | 4094 
FOXO3 | 2309 Forkhead Box 03 [15] 
ILK | 3611 Integrin linked kinase [16] 
TGFB1 | 7040 Transforming growth factor, beta 1 [22] 
C1QBP | 708 Complement component 1, q subcomponent binding protein [23] 
GAS5 | 60674 Long non coding RNA growth arrest specific transcript 5 [24] 
KAT2B | 8850 K (lysine) acetyltransferase 2B [25] 
Genes Activated by YBX1 | 4904 
CCL5 | 6352 Chemokine (C-C motif) ligand 5 [26,27] 
CD44 | 960 CD44 molecule [28] 
ITGA6 | 3655 Integrin, alpha 6  
MMP2 | 4313 Matrix metallopeptidase 2 [29,30] 
POLA1 | 5422 Polymerase (DNA directed), alpha 1, catalytic subunit [31] 
EGFR | 1956 Epidermal growth factor receptor   

 [32] ERBB2 | 2064 V-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 
MET | 4233 Met proto-oncogene [33] 
ABCB1 | 5243 ATP-binding cassette, sub-family B (MDR/TAP), member 1 [34,35] 
MVP | 9961 Major vault protein [36] 
PDGFB | 5155 Platelet-derived growth factor beta polypeptide [37] 
PTPN1 | 5770 Protein tyrosine phosphatase, non-receptor type 1 [38] 
SMAD7 | 4092 SMAD family member 7 [39] 
CCNA1 | 8900 Cyclin A1  

[40] CCNA2 | 890 Cyclin A2 
CCNB1 | 891 Cyclin B1 
PIK3CA | 5290 Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha [41] 
Genes Repressed by YBX1 | 4904 
ACTA1 | 58 Actin, alpha 1, skeletal muscle [42,43] 
COL1A1 | 1277 Collagen, type I, alpha 1 [44,45] 
COL1A2 | 1278 Collagen, type I, alpha 2 [46] 
CPS1 | 1373 Carbamoyl-phosphate synthase 1, mitochondrial [47] 
FAS | 355 Fas cell surface death receptor [5] 
CSF2 | 1437 Colony stimulating factor 2 (granulocyte-macrophage) [48,49] 
HSPA5 | 3309 Heat shock 70kda protein 5 [50] 
MMP12 | 4321  Matrix metallopeptidase 12 [51] 
MMP13 | 4322 Matrix metallopeptidase 13 [52] 
HLA-A | 3105 Major histocompatibility complex, class I, A  

 
[53] 

HLA-B | 3106 Major histocompatibility complex, class I, B 
HLA-C | 3107 Major histocompatibility complex, class I, C 
HLA-E | 3133 Major histocompatibility complex, class I, E 
HLA-F | 3134 Major histocompatibility complex, class I, F 
HLA-G | 3135 Major histocompatibility complex, class I, G 
HLA-DRA | 3122 Major histocompatibility complex, class II, DR alpha  

 
[54–56] 

B2M | 567 Beta-2-microglobulin 
HLA-DQB1 | 3119 Major histocompatibility complex, class II, DQ beta 1 
ABCC2 | 1244 ATP-binding cassette, sub-family C (CFTR/MRP), member 2 [57] 
CDKN1A | 1026 Cyclin-dependent kinase inhibitor 1A (p21, Cip1) [58] 
TP53 | 7157 Tumor protein p53 [59] 
TSHR | 7253 Thyroid stimulating hormone receptor [60] 
VEGFA | 7422 Vascular endothelial growth factor A [61,62] 
SOX2 | 6657 SRY (sex determining region Y)-box 2 [63] 
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Materials and Methods 
RNA Seq data and Sample Quality Analysis 

The Cancer Genome Atlas (TCGA) RNA-Seq 
level 3 data for YBX1 and its interactors belonging to 
116 normal and normal matched tumor samples in 
LUAD were downloaded from Broad Genome Data 
Analysis Center (GDAC) Firehose site (https://gdac. 
broadinstitute.org/). RNA Sequence by Expectation 
Maximization (RSEM) [69] counts for 57 genes of our 
interest including YBX-1 were used for differential 
expression analysis. 

Principle Component Analysis (PCA) and 
hierarchical clustering with log transformed datasets 
of the samples were performed using R-Bioconductor 
[70,71] package DESeq2 [72] to estimate sample 
dispersion and to filter out the outlier. 

Differential Expression (DE) Analysis and 
Correlation between genes 

R-Bioconductor package DESeq2 was used to 
carry out differential expression analysis with 
nbionom Wald test for calculating logarithmic fold 
change and Benjamini- Hochberg method [73] for 
estimating adjusted-p value. Genes with adjusted-p 
value less than 0.05 were considered as differentially 
expressed. Correlation between differentially express-
ed genes was calculated with Pearson Correlation 
method using R package Hmisc [74] and the plot for 
the correlation coefficient was constructed using R 
package Corrplot [75].  

Gene Regulatory Network Construction and 
Analysis 

Gene regulatory network was constructed for the 
56 genes omitting GAS5 using the GeneMANIA [76] 
with maximum resultant gene and attributes to enrich 
were 30 and 215 respectively. And the constructed 
network was analyzed for its network topology by 
looking at its parameters like closeness centrality, 
betweenness centrality and degree with network 
analysis tool in Cytoscape 3.4 [77]. RAIN (RNA – 
protein Association and Interaction Network) [78] 
was used to identify interactors for the long 
non-coding RNA (lncRNA) GAS5. And Search Tool 
for Retrieval of Interacting Genes (STRING) database 
[79] was used to analyze the network and the 
interactions with confidence level of 0.7 were 
considered significant. Network with not more than 
10 interactors for the GAS5 was constructed. 

Gene Set Enrichment Analysis 
Functional enrichment for the genes common to 

both differentially expressed gene sets and hub genes 

from network was done by using Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID) [80]. Gene Ontology (GO) database [81] 
provides the annotation for the gene set and Reactome 
pathway [82] illustrate the pathways in which the 
genes were involved. With DAVID tool we analyzed 
the gene set in both GO and Reactome pathway with 
p-value < 0.05 and gene-count > 3 as condition for 
enrichment analysis. 

Results 
Assessment of Sample Quality and Filtering 

In this study, we initially took 116 LUAD 
samples with TCGA level-3 data. With Principle 
Component Analysis (PCA) and hierarchical 
clustering removed samples whichever showed 
variation within its group (Figure S1). And we plotted 
again PCA and hierarchical clustering for the final 95 
samples with 57 genes. After filtering, two methods 
now able to distinguish the samples based on their 
conditions- normal or tumor (Figure 1). 

Differential Expression Analysis and 
Correlation between Genes 

The 43 genes which have adjusted-p value less 
than 0.05 were selected as differentially expressed 
with GATA1 having a high negative fold change 
(-1.91476) and MMP13 having a high positive fold 
change (5.81790). And correlation matrix between the 
differentially expressed genes was constructed and 
the correlation coefficient with p-value less than 0.05 
were considered significant (Figure 2). YBX1 showed 
a maximum positive correlation with C1QBP (0.592) 
and negative correlation with HLA-E (-0.281) (Table 
S1). 

Gene Network Construction and Analysis 
Gene network was constructed and analyzed 

(Figure 3), it has 86 nodes and 3611 interactions (Table 
2). Top 10 genes involved in the network formation 
were selected based on the topology parameter- 
degree, betweenness centrality and closeness 
centrality (Table 3). The attributes from GeneMANIA 
showed cancer pathways hold 15.34% in network 
with involvement of 17 genes (Table 4). 

As GeneMANIA construct network and 
interactions for the coding gene, it was not able to 
predict for GAS5. So RAIN database which identify 
the interactors for non-coding RNA was used to 
identify interactors of GAS5. Total 10 interactors were 
found and the network was constructed between the 
genes with confidence level of 0.7 using STRING 
database (Figure 4) 
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Figure 1. Quality of the samples after filtering. (1A) Heatmap shows the unsupervised hierarchical clustering of the normal and tumor samples in LUAD after 
filtration. The row represents the genes and column represent the samples. Normal and tumor samples are clustered within their group based on their Euclidean 
distance. (1B) Principle Component Analysis for the filtered samples shows that first principle component (PC1) separates the normal and tumor samples. In both 
analysis, samples are found to be grouped within their type.  
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Figure 2. Correlation plot between the differentially expressed genes in LUAD. Correlation with the significance p- value (<0.05) are shown. Insignificant 
correlation are left blank without colors.  

 

Table 2. Interaction type and number of interactions in the 
network constructed by GeneMANIA 

Type of Interactions Number of Interactions 
Co-expression 1761 
Co-localization 116 
Genetic Interaction 98 
Pathways 182 
Physical Interaction 462 
Predicted 13 
Shared Protein Domain 979 

 
 

Gene Set Enrichment Analysis 
The annotation of the gene with GO and 

Reactome pathways using DAVID resulted in a single 
cluster with genes enriched in GO- cellular 
components of proteinaceous extracellular matrix and 
extracellular region. GO- Biological process contained 
the collagen catabolic process and Reactome 
pathways included Generic transcriptional regulation. 
Only 3 genes were involved in the enrichment when 

the condition for enrichment was made high, namely- 
COL1A2, MMP12, MMP13. The enriched terms are 
shown in Table 5. 

 
 

Table 3. Central genes in Gene Regulatory network constructed 
using GeneMANIA and analyzed by Cytoscape- Network Analysis 
Tool. Top 10 gene with high Closeness Centrality, Betweenness 
Centrality and Degree. 

Genes Closeness 
Centrality 

Genes Betweenness 
Centrality 

Genes Degree 

MMP13 1.000 HLA-DRA 0.018 HLA-DRA 317 
YBX-1 1.000 B2M 0.017 HLA-DMA 274 
TSHR 1.000 HLA-A 0.015 HLA-A 266 
ABCC2 0.800 HLA-C 0.014 HLA-DPB1 266 
KATA2B 0.750 CDKN1A 0.014 HLA-DPA1 257 
ABCB1 0.750 ILK 0.014 B2M 255 
COL1A2 0.700 HLA-B 0.010 HLA-G 252 
CDKN1A 0.689 HLA-DMB 0.010 HLA-DMB 246 
MMP 12 0.667 VEGFA 0.009 HLA-F 241 
MYC 0.667 HLA-DRB1 0.008 HLA-DRB1 226 
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Figure 3. Gene network constructed and analyzed with Cytoscape. Directed root network built from the gene interaction data obtained from GeneMANIA. 
Network has 86 nodes with 3611 interactions. Figure 3A, 3B and 3C highlights the top 10 genes with closeness centrality, betweenness centrality and degree 
respectively. CDKN1A is the common gene between closeness centrality and betweenness centrality. Five genes namely, HLA-DRA, HLA-A, HLA-DRB1, HLA-DMB 
and B2M showed highest betweenness centrality and degree. 
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Figure 4. Interactors of GAS5 derived from RAIN database. Interaction with confidence level > 0.7 is considered as significant. Among the interactors GAS2 
and PMP22 are the proteins involved in interaction with GAS5. 

 

Table 4. Genes involved in Cancer Pathways, known from 
GENEMANIA network attributes. 

Gene Id Gene 
CCNAI | 8900 Cyclin A 
VEGFA | 7422 vascular endothelial growth factor A 
MMP2 | 4313 Matrix Metallopeptidase 2 
MET | 4233 Met proto-oncogene 
MAX | 4149 MYC associated factor X 
SHH | 6469 Sonic hedgehog 
TGFB1 | 7040 Transforming Growth Factor, Beta 1 
ITGA6 | 3655 Integrin, alpha 6 
FAS | 355 Fas cell surface death receptor 
TP53 | 7157 Tumor Protein p53 
PDGFB | 5155 Platelet-derived growth factor beta polypeptide 
CDKN1A | 1026 Cyclin-dependent kinase inhibitor 1A 
ERBB2 | 2064 v-erb-b2 avian erythroblastic leukemia viral oncogene 

homolog 2 
PIK3CA | 5290 Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic 

subunit alpha 
EGFR | 1956 Epidermal growth factor receptor 
CDKN1B | Cyclin-dependent kinase inhibitor 1B 

 
 

Table 5. Gene Enrichment Analysis- Gene Ontology (GO) and 
Reactome Pathways (RP) enriched by genes common to 
differential expression and hub gene in the gene regulatory 
network. 

Group Term Gene Count p-value 
GO-BP GO:0030574~collagen catabolic process 3 1.419E-4 
GO-CC GO:0005578~proteinaceous extracellular 

matrix 
3 0.002 

GO-CC GO:0005576~extracellular region 3 0.065 
RP R-HSA-1442490:R-HSA-1442490 3 4.829E-4 

 

Discussion 
Despite of various studies carried out on YBX1, 

role of its interactors in lung adenocarcinoma have 
been less explored. YBX1 have been involved in the 
regulation of tumor progression in lung 
adenocarcinoma [83, 84], so understanding its 
interactions with other gene become a necessary to 
know their mechanism in disease progression and 
drug discovery. Our present study finds that YBX1 is 
up regulated with a low fold change (0.224). GATA 1 
and GATA 2 which upregulate YBX1 level in 
erythroid cells [20] were found to be down regulated 
that indicates that they don’t play major role in 
regulation of YBX1 in lung adenocarcinoma.  

Among the genes which upregulate YBX1, 
PABPC1 which is involved in the translation of YBX1 
mRNA [85] was found to be having high correlation 
(> 0.4) with YBX1 and it was significantly expressed 
with a fold change of 1.259. C1QBP which is known to 
be involved in prostate cancer progression [86] and a 
highly negative regulator of YBX1 in renal cell 
carcinoma [87] is highly correlated with YBX1 along 
with GAS5, a long non-coding RNA which involves in 
regulating cell death in prostate cancer [88]. Among 
the GAS5 interactors identified from RAIN database 
there are two proteins namely Growth Arrest Specific 
2 (GAS2) and Peripheral myelin protein 22 (PMP22) 
which are known to be over expressed in colorectal 
cancer cell and breast cancer patients [89, 90] 
respectively. However the evidence regarding their 
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role in LUAD disease progression needs to be 
explored for being a potential biomarker in LUAD 
identification and for therapeutic application.  

Comparison of the differentially expressed genes 
and the hub genes in the network formation revealed 
that MMP13, ABCC2, MMP12, TSHR, COL1A2, 
PABPC1 and YBX1 are common among the both 
groups. Except for PABPC1, rest of the genes are 
usually repressed by YBX1, but in our study they are 
among the highly up regulated genes making a need 
for further study to understand their relationship 
between YBX1 in LUAD. Among the three genes 
involved in the enrichment, MMP12 and MMP13 are 
reported to be involved in the lung cancer in earlier 
studies [90- 94]. Significantly COL1A2 is involved in 
progress of gastric cancer [95] and in head and neck 
cancer [96]. It can serve as a potential biomarker in 
LUAD and its involvement in the disease progress 
need to be explored.  

Conclusion 
The study aimed to investigate the role of YBX1 

and its interactors in lung adenocarcinoma by looking 
at their differential expression and network topology 
study. The study showed PABPC1 can be potential 
target in regulating YBX1. The lncRNA GAS5, whose 
role in the LUAD need to be explored and it can be a 
potential biomarker along with COL1A2.  
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