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Abstract 

We report the whole genome sequences of Hydrogenophaga intermedia S1 and Agrobacterium 
radiobacter S2, the first reported bacterial co-culture capable of degrading 
4-aminobenzenesulfonate (4-ABS), a recalcitrant industrial waste product. To gain insights into the 
genetic basis for the syntrophic interaction between this symbiotic pair and also another recently 
reported Hydrogenophaga associated co-culture, Hydrogenophaga sp. PBC and Ralstonia sp. PBA, we 
performed detailed genetic analysis of these four strains focusing on the metabolic pathways 
associated with biotin, para-aminobenzoic acid (pABA), and protocatechuate metabolism. Both 
assembled Hydrogenophaga draft genomes are missing a majority of the genetic components 
associated in the biosynthetic pathway of pABA and biotin. Interestingly, a fused pABA synthase was 
found in R. sp PBA but not in A. radiobacter S2. Furthermore, using whole genome data, the 
taxonomic classification of R. sp. PBA and A. radiobacter S2 (both previously inferred from 16S 
rRNA gene) was re-investigated, providing new evidence to propose for their re-classification at 
the genus and species level, respectively 
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Introduction 
4-aminobenzenesulfonate (4-ABS) is a type of 

sulfonated aromatic amines that serve as key 
intermediates in the manufacturing of dyes, sulfa 
drugs, brighteners and pesticides. Presence of 
sulfonate moiety on aromatic ring renders the 
compound recalcitrant against biodegradation in 
activated sludge by aromatics-degrading bacteria 
[1-3]. In addition, the inhibitory effects of 4-ABS on 
prokaryotic folate metabolism presents another 
barrier to its utilization by common bacterial colonies 

[4]. Not surprisingly, microbial degradation of 4-ABS 
is a rare occurrence among microbiomes found in 
natural soils, sediments and in activated sludge [5]. 
The first reported, and likely one of the most efficient 
microbial biodegradation of 4-ABS was reported in a 
co-culture consisting of Hydrogenophaga intermedia S1 
and Agrobacterium radiobacter S2 isolated from 
Germany [1]. 15 years later, a co-culture consisting of 
another Hydrogenophaga strain but with a 
beta-proteobacterium, Ralstonia sp. PBA, was isolated 
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from textile wastewater in Malaysia similarly 
demonstrating efficient 4-ABS biodegradation 
ability [5, 6]. 

 In strains S1/S2, it was demonstrated that the 
metabolites secreted by strain S2 e.g. 
p-aminobenzoate (pABA) and biotin, served as growth 
factors for strain S1, enabling the strain to degrade 
4-ABS [6]. The first catabolic step of 4-ABS by S1 
involves deamination of the compound to 
4-sulfocatechol (4SC) [1]. The downstream reaction of 
4-ABS degradation is characterized by ring cleavage 
of 4SC catalyzed by the combined actions of type II 
protocatechuate 3,4-dioxygenase alpha and 
protocatechuate 3,4-dioxygenase beta unit which are 
encoded by pcaG2 and pcaH2 respectively [7]. The 
catabolism of 4-SC involves ring cleavage and 
desulfonation catalyzed by PcaB2 (a modified 
3-carboxy-cis,cis-muconate-lactonizing enzyme) and 
4-sulfomuconolactone hydrolase, respectively, 
leading to the generation of maleylacetate that can be 
channeled into the tricarboxylic acid cycle [7-10].  

 The symbiotic relationship between 
Hydrogenophaga sp. PBC and Ralstonia sp. PBA is 
slightly different in that the helper strain PBA was not 
able to utilize 4-sulfocatechol as its sole carbon source 
and may depend on other compounds generated from 
the later step of 4-ABS metabolism to maintain growth 
[5]. Genomic resources for Hydrogenophaga sp. PBC 
and Ralstonia sp. PBA are now available [11, 12] and 
preliminary genomic analysis has shown that strain 
PBA contains two copies of pabB gene potentially 
allowing it to overproduce this growth factor. 
However, it remains unclear if similar genetic feature 
is present in A. radiobacter S2. 

The species designation of strain S2 as A. 
radiobacter based on 16S rRNA phylotyping may be 
questionable given its atypical isolation source e.g. 
non-plant host. This is further complicated by the 
current lack of taxonomic consensus on the 
nomenclature and classification of Agrobacterium 
species [13]. Similarly, the genus designation of 
Ralstonia sp. PBA may benefit from additional 
investigation given its potentially unreliable 
classification based on 16S rRNA and also its 
substantially smaller genome size compared to other 
sequenced strains in the genus Ralstonia [14, 15]. 

In this study, we aim to (1) sequence the genome 
of Hydrogenophaga intermedia S1T and Agrobacterium 
radiobacter S2, the first 4-ABS degrading co-culture 
strains to be reported, (2) understand the genetic basis 
for symbiotic relationship among 4-ABS degrading 
co-cultures, and (3) revisit the taxonomic status of 
Agrobacterium radiobacter S2 and Ralstonia sp. PBA 
using recent genomic concepts for taxonomic 

demarcation. 

Materials and Methods 
Whole genome sequencing and genome 
assembly 

 Purified genomic DNA of strains S1 and S2 were 
tagmented with Nextera XT (Illumina, San Diego, CA) 
and sequenced on the MiSeq desktop sequencer 
located at the Monash University Malaysia Genomics 
Facility using a 2 × 150 bp paired-end run 
configuration. Nextera adapter sequences in raw 
FASTQ sequence reads were trimmed using 
Trimmomatic software v0.35 [16], error-corrected and 
assembled de novo into contigs with SPAdes genome 
assembler v3.5.0 [17]. The assembled contigs were 
extended and scaffolded using SSPACE v.3.0 [18]; 
gaps were removed with GapFiller v1.10 [19]. 
Average nucleotide identity (ANI) was calculated 
using JSpecies v1.2.1 [20].  

Phylogenomic analysis and protein domain 
identification 

Protein coding sequences were predicted from 
the assembled contigs using Prodigal v1.20, a gene 
prediction algorithm for prokaryotes [21] and 
subsequently utilized for phylogenomics tree 
construction with PhyloPhlAn. The percentage of 
conserved proteins (POCP) matrix was computed as 
previously reported [22]. Protein domain 
identification was performed using HMMsearch v3.1 
[23] against selected TIGRFAM and Pfam profiles 
(Fig. 1A and B). For TIGRFAM profiles [24], 
significant hits were filtered using both trusted cutoff 
(the lowest-scoring known true positive that is above 
all known false positives) and noise cutoff (the 
highest-scoring known false positive) settings while 
for Pfam profiles [25], an E-value cutoff of 1e-5 was 
used [26]. 

Results and Discussion 
Comparative analysis of genes involved in the 
biosynthesis of p-aminobenzoate  

The absence of gene coding aminodeoxycho-
rismate synthase (PabB) critical for the synthesis of 
pABA [27, 28] in both annotated genomes of strains S1 
and PBC corroborates with their requirement for 
pABA to maintain growth in axenic culture (Figure 
1A). Interestingly, two positive TIGRfam protein 
domain hits were detected from the annotated genes 
of strain PBA for PabB (TIGR00553) which catalyzes 
the formation of 4-amino-4-deoxychorismate from 
ammonia and chorismate [29]. However, the HMM 
scores for the TIGR03461 hits corresponding to PabC, 
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the catalytic enzyme involved in breakdown of 
4-amino-4-deoxychorismate into pABA and pyruvate 
[30] were below the noise cutoff. Using an alternative 
HMM profile, PF01063 containing the 
amino-transferase class IV protein domain typically 
associated with but not specific to PabC, two 
significant hits were obtained of which one of them 
interestingly hit to a PabB protein (WP_009523382.1, 
contig AKCV01000025), indicating a potentially fused 
PabBC enzyme (Figure 1B). On the other hand, the 
second identified PabB (WP_009521599.1, contig 
AKCV01000019.1) was not genetically linked to any 
PF01063 domain-containing protein (Figure 1B).  

Fused PabBC enzyme has been previously 
reported in several strains of gram-positive and 
gram-negative bacteria such as Lactococcus lactis, 
Streptococcus pyogenes and Helicobacter pylori [31]. 
Group of proteins that execute functionally reciprocal 
interactions incline to fuse together, giving rise to a 
protein modularity with defined domains of 

biological functions [32, 33]. In addition, physical 
amalgamation of such kind endows selective 
advantage over allosteric gene regulation, metabolic 
features, protein size and many more – conferring a 
competitive edge over the survival of a strain [34]. In 
the case of fused PabBC in Ralstonia sp. PBA, this can 
potentially lead to the overproduction of pABA which 
can sustain the requirement of a pABA auxotroph 
partner e.g. Hydrogenophaga sp. PBC leading to the 
establishment of a stable symbiotic relationship. 
Further study is necessary however to confirm the 
function of both TIGR00553 domain-containing 
proteins and to measure the catalytic efficiency of the 
fused PabBC in pABA synthesis.  

On the contrary, A. radiobacter S2 contains only 
one TIGRfam hit to PabB while the authentic PabC for 
this bacterium could not be confidently identified as 
none of the three genes coding for protein with hit to 
PF01063 was located on the same contigs as pabB. 
Surprisingly, subsequent search for TIGR03641 hits 

 
Figure 1. (A) Putative genetic catalogues of biosynthetic and metabolic pathways of pABA, biotin and protocatechuate in strain PBC, PBA, S1 and S2, as 
searched against TIGRFAM [24] and Pfam [25] databases. Number of hits designated to each of the strains was color annotated accordingly. (B) Fused 
PabBC and PabB protein domains identification in strain PBA, as searched against InterPro databases via InterProScan [26].  
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within the annotated genes of members from the 
genus Agrobacterium or even the known 
pabC-containing Pseudomonas aeruginosa strain PAO1 
in Uniprot (as of 14 March 2017) returned zero hit 
(data not shown), suggesting the need to revise HMM 
scoring profile and threshold for TIGR03641 and/or 
the possible existence of alternative 
aminodeoxychorismate lyase as previously reported 
in Chlamydia [35]. Although we could not find 
genomic evidence to suggest enhanced pABA 
synthesis in strain S2, profligate synthesis of biotin 
instead has been demonstrated in wild-type A. 
tumefaciens (identical to A. radiobacter [36]) with biotin 
production per viable cell that is 20-and 60-fold 
greater than that of E.coli and B. subtilis, respectively. 
Such trait was subsequently suggested to be useful to 
A. tumefaciens in that the recipients of the cofactor will 
aid the growth and survival of A. tumefaciens [37]. 

Genes coding for enzymes involved in the 
biosynthesis of biotin are severely lacking in 
Hydrogenophaga intermedia S1 and 
Hydrogenophaga sp. PBC 

Interestingly, while it was suggested that strains 
S1 and PBC were auxotrophs to biotin [5, 6], 
TIGRFAM search revealed the presence of a biotin 
synthase (BioB, EC:2.8.1.6) in their annotated genes 
(Fig 1A). Biotin serves as an integral cofactor in carbon 
fixation reactions [38], and BioB catalyzes the 
terminal-stage reaction of biotin synthesis through 
which it generates biotin from its precursor 
dethiobiotin [39]. Nonetheless, biotin biosynthesis 
encompasses myriads of biochemical reactions 
requiring other associated enzymes such as 
8-amino-7-oxononanoate synthase, adenosylmethio-
nine-8-amino-7-oxononanoata aminotransferase and 
dethiobiotin synthase which were not detected in the 
annotated genomes of strains S1 and PBC [38]. 

Protocatechuate and 4-sulfocatechol 
catabolism among helper strains 

Ralstonia sp. PBA lacked a substantial portion of 
integral enzymes associated with the catabolism of 
protocatechuate and/or 4-sulfocatechol (Fig. 1A) 
corroborating with previous biochemical results [5, 
40]. Unlike Ralstonia sp. PBA, A radiobacter S2 could 
grow on 4-sulfocatechol secreted by H. intermedia S1 
during 4-ABS catabolism as its sole carbon source [1]. 
Two types of protocatechuate dioxygenases were 
identified in the annotated genome of A. radiobacter S2 
(Fig. 1B) which is consistent with previous molecular 
work showing that both variants could degrade 
protocatechuate with high efficiency but only one of 
them (protocatechuate 3,4-dioxygenase type II), 

showed activity towards 4-sulfocatechol [41].  

Taxonomic revision of Agrobacterium 
radiobacter S2 and Ralstonia sp. PBA 

Phylogenomic analysis (Fig. 2) showed that 
strains currently assigned as A. tumefaciens (identical 
to A. radiobacter [36]) shared a common ancestor with 
A. fabrum and A. sp. ATCC31974. Among them, A. 
tumefaciens F2 was sister taxa to strain S2 with 
maximal SH-like bootstrap support. Surprisingly, 
with a suggested ANI parameter of ~95-96% for 
species delineation [20], 5 distinct genospecies could 
be identified for members within this clade. Two 
genomic clusters represented by two genome pairs 
e.g. (i) A. tumefaciens NCPPB3001-A. tumefaciens B6 
and (ii) A. fabrum C58-A. sp. ATCC31749 could be 
designated with a valid Agrobacterium species name 
[20]. For strain S2 however, given the lack of >95% 
ANIm similarity to known Agrobacterium species, its 
current taxonomic assignment as A. radiobacter is not 
valid and we propose a more conservative 
classification of strain S2 as Agrobacterium sp. pending 
future taxonomic description. 

The basal position of Ralstonia sp. PBA within the 
Cupriavidus clade indicates that it is more closely 
related to the genus Cupriavidus than Ralstonia (Fig. 
3A). Pairwise comparison of the whole proteome of 
strain PBA against members of genus Cupriavidus 
generated median POCP value of 51% (Fig. 1D), 
which slightly surpassed the genus demarcation 
threshold of 50% proposed by Qin et al., 2014 [22] 
(Fig. 3B). Taken together, the data seemed to 
consolidate the proposed phylogenetic affinity of 
strain PBA to the genus Cupriavidus instead of 
Ralstonia but considering the intertwined biography 
of the genus Cupriavidus with several other 
β-proteobacteria (Ralstonia, Wautersia, Alcaligenes), 
genus classification for this group of bacteria could be 
fairly misleading [42]. In fact, strains that retain 
several basonyms, such as Ralstonia eutropha – 
previously known as Cupriavidus metallidurans or 
Alcaligenes eutrophus, well represent the history of 
intermingled nomenclature and taxonomy of the 
genus Ralstonia [42]. With the availability of more 
genomic resources, a more comprehensive genomic 
analysis of members of these related genera will be 
beneficial which is beyond the scope of this study. 

Data Availability 
The assembled draft genomes of strains S1 and 

S2 are 5 MB (124 contigs) and 5.7 MB (60 contigs), 
respectively, and have been deposited into the NCBI 
database under the accession numbers 
CCAE01000000 and CCAN01000000, respectively. 
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Whole genome sequencing for strains PBA and PBC has been previously reported [11, 12]. 

 
Figure 2. Maximum likelihood tree of the genus Agrobacterium rooted with members of the genus Rhizobium as the outgroup. Heatplot next to the tree is 
ANIm matrix generated from the 7 selected Agrobacterium strains. 

 
Figure 3. (A) Maximum likelihood tree of the genera Cupriavidus and Ralstonia. Values in nodes indicate SH-like support values, numbers in brackets indicate 
number of branches collapsed and scale bar indicates number of amino acid substitutions per site (B) Bean plot of POCP data calculated between PBA vs 
members of the genus Cupriavidus and Burkholderia. 
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