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Abstract 

There is a voluminous amount of scientific literature dealing with the involvement of adipo-
cytes in molecular regulation of carcass composition, obesity, metabolic syndrome, or dia-
betes. To form adipocytes (process termed adipogenesis) nearly all scientific papers refer to 
the use of preadipocytes, adipofibroblasts, stromal vascular cells or adipogenic cell lines, and 
their differentiation to form lipid-assimilating cells containing storage triacylglyceride. How-
ever, mature adipocytes, themselves, possess ability to undergo dedifferentiation, form pro-
liferative-competent progeny cells (the exact plasticity is unknown) and reinitiate formation of 
cells capable of lipid metabolism and storage. The progeny cells would make a viable (and 
alternative) cell system for the evaluation of cell ability to reestablish lipid assimilation, ability 
to differentially express genes (as compared to other adipogenic cells), and to form other 
types of cells (multi-lineage potential). Understanding the dedifferentiation process itself 
and/or dedifferentiated fat cells could contribute to our knowledge of normal growth pro-
cesses, or to disease function. Indeed, the ability of progeny cells to form other cell types 
could turn-out to be important for processes of tissue reconstruction/engineering and may 
have implications in clinical, biochemical or molecular processes. 
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Introduction 
As a consequence of cellular adipogenesis, lipid 

metabolism, gene and protein expression and adi-
pokine secretion, mature adipocytes containing a sin-
gle large lipid droplet were generally considered to be 
in the terminal stage of differentiation [1-4]. Recent 
studies, however, have indicated that mature adipo-
cytes possess the ability to dedifferentiate into a pop-
ulation of proliferation-competent progeny cells 

known as adipofibroblasts or dedifferentiated fat 
(DFAT) cells [5-13]. This ill-defined phenomenon 
challenges the traditional view of the terminality of 
mature adipocytes [1, 14].  

Mature adipocyte dedifferentiation 
Adipocyte dedifferentiation is readily seen in 

vitro [5-10, 15-33]. The key to obtaining knowledge 
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with progeny of mature adipocytes is to insure that 
initial cell cultures are pure, and do not possess con-
tamination with spindle-shaped preadipocytes. In 
order to accomplish this, during the dedifferentiation 
process mature adipocytes attach to the surface of a 
culture flask (Figure 1) and change morphology from 
a round cell into an irregular shaped cell. Subse-
quently, the lipid droplet is sectioned into smaller 
droplets and the cell divides into two progeny cells 
processing different amounts of lipid [7, 15-17, 34]. 
Chen et al. (2009 a,b) [15,18] indicated that cultured 
mature pig-derived adipocytes expel lipid directly 
into the medium prior to becoming capable of cell 
division, rather than retaining lipids and transferring 
the lipid into progeny cells symmetrically or asym-
metrically as do mature adipocytes from other ani-
mals [5,7, 19,20,35]. These results suggest that li-
pid-processing by individual cells may be different 
among species, while the cellular and molecular reg-
ulation of the dedifferentiation process remains un-
clear. Although dedifferentiation may result in cellu-
lar/molecular markers being expressed in the dia-
metrically-opposite direction of traditional adipo-

genesis [21], these checkpoints have not been defined, 
even though the phenomenon of mature adipocytes 
forming proliferative-competent progeny cells was 
first reported over 30 years ago by Adebonojo 
(1975a,b) while performing research on human adi-
pocytes [22, 23].  

Are there other explanations about these cells? 
Could DFAT cells that have been described as origi-
nating from mature adipocytes actually be cells like 
fibroblasts that possess the potential for extreme lev-
els of lipid metabolism [5, 7, 36]? Alternatively, could 
these cells be a completely new type of cell which 
presents both differentiation and proliferation abili-
ties [5, 7, 36]? 

While our studies with mature adipocyte dedif-
ferentiation involved pure cultures of cells derived 
from large meat animals, similar cell systems from 
other animals have been established. To clarify the 
molecular mechanisms of mature adipocyte dedif-
ferentiation, Ono et al., [24] using porcine cells and 
microarray analysis, identified differentially ex-
pressed genes during dedifferentiation.  

 
 

 

Figure 1. Sequence of pig-derived (mature) adipocyte dedifferentiation in vitro. A. Initial ceiling culture, B. Mature adipocyte 
following purification by differential plating methods. C-F. Sequence whereby the mature cell (in B) undergoes lipid reor-
ganization/extrusion and divides with asymmetric cell division. All photomicrographs were taken with a Sony RGB digital 
camera married to a Nikon Diaphot phase contrast microscope and Image Pro Plus image analysis software [20 x magni-
fication]. 
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Figure 2: Stages of differentiation and dedifferentiation of fat cells. (1) adipofibroblasts, preadipocytes or stromal vascular 
cells proliferate until the cell population is expanded to the correct number. Under intrinsic and extrinsic signals, these cells 
(2) initiate the metabolism/accumulation of lipids where some of them can become a mature adipocyte (3) while some of 
them retain the capacity to lose lipid and return to a proliferative stage. Other types of cells (4) may also display both 
proliferative and lipid accumulative ability contributing for an increase in the mature adipocyte population. 

 
Ono et al. [24] reported that dedifferentiation 

resulted in 308 genes being down-regulated [many of 
which were involved in metabolism of lipid such as 
ADIPOQ, LIPE, PDK4, LPL, FASN, PPARG and 
FABP4]. Concomitantly, 368 genes were clearly up 
regulated during dedifferentiation [up regulated 
genes were those related to proliferation and differ-
entiation, such as SERPINE1, TIMP1, PLAU, SFRP2, 
AEBP1, PRRX2, PEG10, IGFBP5 and ID2]. A variety of 
other studies are available to indicate that during de-
differentiation mature adipocytes lose their functional 
phenotype, reenter the cell cycle, gain a fibroblast-like 
appearance and eventually acquire a multipotent ca-
pacity for lineage differentiation [8-10,12,13,19] (Fig-
ure 2). 

DFAT cells as a model for adipogenesis 
DFAT cells apparently possess a strong ability to 

proliferate (up to 30 passages) without detectable li-
pid deposition [25], which suggests the availability of 
DFAT cells could be used as a novel model for adi-
pocyte differentiation and tissue formation. Whereas 

a variety of different cell culture systems have been 
used to address questions dealing with adipogenesis, 
including the use of lines of Swiss mouse embryo 
3T3-L1 and stromal vascular (SV) cells [5], some sig-
nificant differences between these cells and DFAT 
cells have been reported. Markers such as ANPEP, 
ITGB1, CD34, CD44 and THY1, ENG, MCAM, 
HLA-A, HLA-B, HLA-C were found on both SV and 
DFAT cells [28, 37-39]. However, the surface immu-
no-phenotype partially changes in different passages 
of adipose-derived SV cells. At the early passages 
(primary to 4th) of adipose-derived SV cells, the 
hematopoietic-associated markers (ITGAL, CD14, 
PTPRC, CD86 and HLA-DR) decreased and the 
MSCs(Mesenchymal stem cells)-associated markers 
(ANPEP, ITGB1, CD34, CD44, CD63, NT5E, THY1 
and ALCAM) increased significantly [28,39]. Con-
versely, the phenotype of DFAT cells remained con-
siderably stable from the early 2nd to as long as the 
30th passage [25].  

Cellular origin, homogeneity of cultures, 
whether the cells were previously transformed, re-
peatability of obtaining the same proportions of cells 
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for culture, markers of adipogenesis and lipid metab-
olism, and viability of cells are all physiologies that 
must be considered when evaluating SV cells, cell 
lines and progeny from DFAT adipocytes 
[3,5-7,11-14,19,32,40]. For example, the doubling time 
of DFAT cells was approximately 18 h whereas the 
time for the 3T3-L1 cells was 22 h [26], DFAT cells 
apparently possess higher GPDH (Glycer-
ol-3-phosphate dehydrogenase) activity than 3T3–L1 
cells, and expression of SREBPF1 and LPL mRNA, 
which is related to lipid metabolism, has been de-
tected during the growth phase in DFAT cells but not 
in 3T3-L1 pre-adipocytes [5]. The expression of 
PPARGC1A and CEBPA mRNA shows an earlier 
peak during differentiation in DFAT cells than in 
3T3-L1 cells [26, 27]. Moreover, gene expression of 
re-differentiating DFAT progeny cells showed some 
differences to published reports using beef-derived 
SV cells [14], and unlike SV cells confluency is not 
required for DFAT cells to undergo differentiation in 
vitro [31]. Data from in vivo studies also suggest that 
DFAT cells possess greater ability to differentiate, not 
only into mature adipocytes, but also into vascular 
endothelial cells, forming a normal adipose tissue 
[27]. From these results, it could be inferred that 
DFAT cells could serve as an alternative model for 
studies of the mechanism of adipose tissue differenti-
ation and formation for both in vitro and in vivo stud-
ies. 

In meat animals, understanding variables re-
garding regulation, cellularity, growth and/or de-
velopment of adipose tissue in different depots are 
important since fat deposition has an economic 
meaning in livestock production [19]. Different 
markers interact functionally to direct several regu-
latory process involved in adipogenesis or lipid me-
tabolism, such as PPAR and SREBP [41, 42]. However, 
the regulatory compounds of adipogenesis are not 
necessarily similar between ruminants and monogas-
tric animals [19]. It has been reported that fat deposi-
tion follows the order in which adipocyte number and 
volume is achieved firstly in the visceral adipose de-
pot and lastly in the intramuscular depot [36,43]. 
Chen et al [16] have indicated that that PPARG and 
CEBPA mRNA were higher in DFAT cells from in-
tramuscular than visceral adipose tissue derived from 
finishing pigs after differentiation, which means in-
tramuscular DFAT cells may be more active in adi-
pogenesis than visceral DFAT cells. This may imply 
that even if DFAT cells originated from the same an-
imal, different depots present different rates of redif-
ferentiation and molecular markers. Additional evi-
dence to support this concept includes: high RNA 
abundance of FABP4 found in adipofibroblasts origi-

nated from dedifferentiation of bovine perimuscular 
mature adipocytes, suggesting that progeny preadi-
pocytes may potentially have an ability to redifferen-
tiate at early time point due to inherited characteris-
tics of molecular components in the cytoplasm of 
progeny cells derived from the mature adipocytes, 
although shape of the cells remains fibroblast-like 
form [14]. Studies that provide knowledge of the dy-
namic of accumulation and metabolism of lipids may 
lead to the adoption of strategies in the livestock 
production in order to enhance fat deposition in spe-
cific (desired) depots [34, 35]. 

Multilineage potential of DFAT cells 
A slightly different focus of DFAT cells studies is 

to understand the mechanisms that allow these cells 
to transdifferentiate in other types of cells [28-30]. 
Under specific in vitro conditions, beef-derived DFAT 
cells redifferentiate in a protracted manner, of which 
some cells contain lipid and some did not (only pos-
sessing the storage vesicles; [31]). DFAT cells are ca-
pable of transdifferentiating to other types of cells 
such as osteoblasts, chondrocytes, skeletal myocytes, 
smooth muscle cells, cardiomyocytes, vascular endo-
thelial cells, and neural cells under appropriate cul-
ture conditions in vitro or in vivo [24]. A particularly 
elegant study found that RUNX2, SPP1, SP7, BGLAP, 
PTH1R and SOX9 were expressed in DFAT cells 
originating from mature adipocytes suggesting the 
osteogenic and chondrogenic potentials of these cells 
are enhanced [28]. Moreover, the transdifferentiation 
of DFAT cells into osteoblasts was observed in vivo by 
the implantation of collagen-based scaffolds [32]. Os-
teogenic differentiation of DFAT cells could also be 
induced by an analog of retinol which interacts with 
bone morphogenetic proteins to inhibit adipogenesis 
and enhance osteogenesis [32].  

Although DFAT and SV cells share similarity 
with regard to multipotential lineage, a distinct aspect 
of the differentiation capacities between these cells 
exist in their angiogenesis behavior [25,44]. Previous 
studies have shown that adipose tissue-derived SV 
cells can differentiate into endothelial lineage and 
express endothelial markers and incorporate acety-
lated low density lipoprotein (Dil-ac-LDL) when 
agents such as fibroblast growth factor (FGF), epi-
dermal growth factor (EGF) and vascular endothelial 
growth factor (VEGF) were applied [45-49]. On the 
other hand, DFAT cells with or without induction 
have negative expression of endothelial cell or pro-
genitor markers such as such VWF, PECAM1 and 
CD34 [28]. 

So, do DFAT cells possess multipotent potential 
[11], or might the manipulation of the daughter cells 
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simply be something manifested through cell culture 
manipulation [44, 50, 51]? Recently, it was demon-
strated that the regulatory region of MYOD1, a master 
regulator for skeletal myogenesis, in DFAT cells 
shows a high degree of methylation [29]. Treatment of 
5-azacytidine, a demethylating agent, led to the ex-
pression of MYOD1 and MYOG in DFAT cells, as well 
as the formation of multinucleated cells expressing 
MUTYH, although MYF5 was still absent after induc-
tion [29]. Another study found expression of specific 
cardiomyocyte-specific markers was observed in 
DFAT cells derived from mature adipocytes when 
co-cultured with neonatal cardiomyocytes, suggesting 
that DFAT cells can convert into cardiomyocyte phe-
notype under appropriate microenvironment [33]. 
Moreover, it was found that DFAT cells expressed 
cardiac phenotypic markers when grown on semi-
solid methylcellulose medium in the absence of car-
diomyocytes, indicating that DFAT cells have the po-
tential to spontaneously convert to cardiomyocyte 
phenotype [33]. Sakuma et al., [30] using immuno-
histochemical analysis revealed that more than 50% of 
the DFAT cells were successfully transformed into 
α-smooth muscle actin-positive cells under specific 
culture condition. The expressions of TAGLN2, 
α-smooth muscle actin and smooth muscle-myosin 
heavy chain were increased in DFAT cells during the 
first week of differentiation culture.  

Collectively, these studies suggest that the DFAT 
cells have potential to differentiate into several line-
ages, including adipose cells, osteoblasts, chondro-
cytes, skeletal myocytes, smooth muscle cells, cardi-
omyocytes, endothelial cells and neuronal cells [44, 
50]. Moreover, although much of the observed multi-
lineage potential was dependent on environmental 
conditions, such as the type of culture media used [51] 
once cells begin to express a phenotype for a different 
tissue form they can be utilized for regimens of tissue 
reconstruction or tissue regeneration/engineering 
requiring those specific cells. Further studies with 
DFAT cells should yield a number of uses for clinical, 
biochemical, metabolism and molecular application. 

Summary 
Dedifferentiation of mature adipocytes, and 

proliferation/transdifferentiation abilities of their 
daughter progeny cells provide us with a cellular 
system for exploring adipocyte involvement in 
fat-related diseases or improving animal productivity. 
Moreover, DFAT cells could be used as a unique ad-
ipogenesis model, and new information may be 
gained on comparative differences among these cells 
and SV cells, and cell lines such as 3T3-L1 cells. Ma-
ture adipocytes that possess the ability to lose lipid 

and form proliferative-competent daughter cells may 
be (in fact) a different type of cell than has ever been 
categorized. Continued studies may uncover this po-
tentially exciting possibility. Finally, the multipoten-
tial lineage of DFAT cells may lead to the use of these 
cells in tissue reconstruction/ engineering. Collec-
tively, there are cellular and molecular implications of 
mature adipocyte dedifferentiation, including the 
potential uses in clinical, biochemical and molecular 
applications. 
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